Credit: Willem Hoebink & Xander van der Sar

Welcome at Stanford's BIRD lab! 
[Bio-Inspired Research & Design]

How do birds morph their body to maximize flight control and performance? | Credit: Jean Francois Cornuet

Why can animals fly effortless through environments that are visually and aerodynamically cluttered? | Credit: Henk Jan Jansen

What enables birds to turn on a dime? | Credit: David Lentink & Jan Wouter Kruyt

How does massive sensory integration enable animals to be super maneuverable? | Credit Joris Schaap & Emile van Wijk





Which aerodynamic mechanisms enable even the simplest organisms to fly stably in turbulence? | Credit: David Lentink



Lab Messages

01/14/2015

Aerodynamic Force Platform Invention

The lab published its invention of the first Aerodynamic Force Platform in Interface , featured in  Nature  as Research Highlight, with  stories  in The Economist, New Scientist, and NYT Video is making an item. The publication presents th...


Read more »
01/08/2015

Successful SICB conference

The lab presented 6 well-received talks at the SICB conference in January and Amanda was a finalist in the student competition. The presentations on bird aerodynamics, unsteady forces, head stabilization, visual flight control, and bioinspired rob...


Read more »
10/26/2014

Students featured on TV/TECHKNOW

TechKnow | Al Jazeera America, visited our lab to learn more about our bird flight research & robot design. Rivers, Amanda and Eric explained their work on camera and talked about Hummingbird aerodynamics, parrotlet laser goggles for flow measurement...


Read more »

TEDx Amsterdam

David Lentink | Bio-inspired Flight

Nature is a great source of inspiration; ever since we first saw animals fly we dreamed of flight. Our dream came true with the invention of the airplane by Lilienthal & the Wright Brothers, who were inspired by birds a century ago. 100 years is, however, extremely recent
on an evolutionary time scale — we can still learn from birds. Currently there is a new wave of bio-inspired innovation that is revolutionizing the design of micro flying robots. Professor Lentink has worked for several years with collaborators and students to solve key biological questions that enable the design of innovative flying robots. In his TEDx talk Lentink explains the ideas that made it all possible.

CNN Feature

The Art of Movement | Bird Flight

Click this link to see The Art of Movement . CNN visited the lab in September 2013 to learn more about how we study bird flight as an inspiration for developing flying robots. The crew visited us on campus and at our field station for two days. Since we just started, it was great to see that many lab members were able to demonstrate their bird flight research and robot development. The excellent organization by several first year graduate lab members promises a wonderful grand opening of our new bird wind tunnel facility in 2014. 

NYT Video

How Birds Lift Weight | Innovation

The lab published its invention of the first Aerodynamic Force Platform (AFP) in Interface, which has been featured in Nature as Research Highlight, with stories in The EconomistNew Scientist, and NYT (left). The publication presents theory, validation, and a demonstration of the first nonintrusive in vivo method to measure aerodynamic force directly in freely flying animals and drones. It is based on the conservation of momentum and Newton's third law, which we applied in an elegant way. The physical realization of this invention required the advanced engineering typical for Stanford's department of Mechanical Engineering.