Swifts are aerial hunters, catching on the wing. On page 1960 of this issue, Videler et al. (5) report how insects fly—conventional lift: They use their wings to generate a so-called leading-edge vortex. Biologists first caught on to this vortex in 1996 when trying to explain how insects fly (1). Since then, this vortex has been observed again and again in flying insects (2–4). The new study reveals that a bird’s wing also can generate this type of vortex (5).

A leading-edge vortex forms on the top of a wing when the angle between the wing and the oncoming air flow is large. The flow then separates from the wing at the leading edge and rolls up into a vortex. To form a leading-edge vortex at lower angles of attack, some wings have a sharp rather than blunt leading edge. To exploit this vortex, the flying animal needs to keep the vortex close to its wing. Insects and swifts have found different solutions to this problem. To stabilize the vortex, flying insects beat their wings rapidly (1), whereas gliding swifts sweep their wings backward (5). The leading-edge vortex spirals out toward the tip of the wing, adopting the shape of a tornado. Like a tornado, the air pressure in the core of the vortex is low, sucking the wing upward and sometimes forward (during flapping).

Swifts have scythe-shaped wings that consist of a long curved hand-wing, which is attached to the body by a short arm-wing. The hand-wing is composed of primary feathers, which form a sharp and swept-back leading edge. Both features help to generate and stabilize a leading-edge vortex. Videler et al. cast a model of a single swift wing in fast gliding posture and recorded the flow fields around the wing in a water tunnel using digital particle image velocimetry. (Flow patterns in water are the same as in air as long as the same Reynolds number is used.) They observed that a vortex forms on top of the wing close behind the wing’s leading edge. This leading-edge vortex is robust against changes in flow speed and angle of attack—observations that agree well with those of other biologists studying the leading-edge vortices of insects. However, surprisingly, the swift wing produces such a vortex at angles of attack as small as 5°, compared with 25° to 45° typical for insects (6, 7).

The achievements of aerospace engineers have inspired biologists to study the aerodynamics of flying animals. Engineers first discovered the extraordinary amount of lift that leading-edge vortices produce when they solved the problem of how to land supersonic fighter jets and passenger aircraft like the Concorde. Swept-back wings not
only make supersonic flight possible, but also generate stable leading-edge vortices at high angles of attack. The resulting extra lift enables delta-wing aircraft to land safely despite their small wings, which are much smaller than those of conventional aircraft.

The swept wing of a swift generates a stable leading-edge vortex. Yet the exact role of this vortex in the swift’s flight performance can only be inferred from observations of their flight. Swifts in flight turn on a dime while catching insects, a spectacular aerobatic display. Anybody observing swifts circling in a yard will notice that the birds hold their wings swept back during fast flight and swiftly change the wing sweep to execute tight turns (see the figure). Aerospace engineers converged on the same solution for their military aircraft, which have to perform optimally both during supersonic and subsonic flight (8). Pilots of fighter jets such as the F-14 Tomcat and the Tornado can choose between different wing sweeps for maximal dogfight and cruise performance (see the figure).

The gliding flight of storks inspired the first airplane designs of Otto Lilienthal in the late 19th century. The beneficent flight characteristics of these slow and stately gliders invested airplane pioneers with the confidence to take to the skies. Swifts are radically different gliders from storks: They are nimble and fast. These attributes require the ability not only to generate large aerodynamic forces from unsteady lift mechanisms, but also to exercise exquisite control over these forces. The next challenge for Videler and his team is to elucidate how swifts use their variable wing sweep to gain direct control over leading-edge vortices in order to increase their flight performance. In the future, the swift’s flight control might inspire a new generation of engineers to develop morphing micro-robotic vehicles that can fly with the agility, efficiency, and short take-off and landing capabilities of insects and birds.

References

10.1126/science.1107070

Superconductivity in Thin Films
Tai-Chang Chiang

Since the 1960s (1), researchers have explored the possibility that the superconducting properties of thin films may be superior to, or at least different from, those of bulk materials. Guo et al. now demonstrate on page 1915 of this issue (2) that film thickness can indeed affect superconducting behavior. Their data show convincingly that the superconducting transition temperature (T_c) of thin lead films oscillates with film thickness.

As the thickness of a film is reduced to the nanometer scale, the film’s surface and interface confine the motions of the electrons, leading to the formation of discrete electronic states known as quantum well states (3). This quantum size effect changes the overall electronic structure of the film. At small thicknesses, physical properties are thus expected to vary, often dramatically, with thickness.

Recent experimental studies have demonstrated such variations with film thickness for properties such as the electronic density of states, electron-phonon coupling, surface energy, and thermal stability (4–8). The variations are expected to follow a damped oscillatory curve that is superimposed on a ±$N^{-\gamma}$ baseline (where N is the number of atomic layers in the film and the exponent γ is often close to 1).

The superconducting transition temperature for a metal such as lead depends on the density of states and on electron-phonon coupling. It should thus also vary with film thickness. Early work generally showed a reduction in T_c for small film thicknesses, in qualitative agreement with a $N^{-\gamma}$ dependence. However, in most cases, structural defects were probably the main reason for the reduction (9).

An oscillatory dependence of T_c on film thickness is a far more convincing proof for quantum size effects. Some prior studies suggested such oscillatory behavior (7, 8), but the report by Guo et al. (2) is the first definitive and quantitative demonstration. Using atomically uniform films of lead with exactly known numbers of atomic layers deposited on a silicon (111) surface (see the figure), the authors observed oscillations in T_c that correlated well with the confined electronic structure. Their work has elevated this type of measurement to a new level of precision and sophistication.

Quantum oscillations can be understood by analogy to the systematic property variations of chemical elements. The number of confined electrons in a film increases as the film gets thicker. These electrons fill quantum well states, just as the electrons in atoms fill successive shells. However, in contrast to the spherical geometry of atoms, the films are planar. The properties therefore vary with film thickness. The period at which they do so is fixed for each system and equals one-half of the bulk Fermi wavelength (which is related to the average electron density and the crystal structure) (4).

For lead films on silicon (111) surfaces, the period of variation is 2.2 atomic layers. Because this is close to 2 atomic layers, physical properties (including T_c) should oscillate between films with even and odd numbers of layers. However, the slight difference between 2.2 and 2 layers leads to a beating effect (see the figure, where a flat baseline is assumed).

The authors is in the Department of Physics and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA. E-mail: chiang@mrl.uiuc.edu